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University of California, Berkeley
Physics H7B Spring 1999 (Strovink)

SOLUTION TO PROBLEM SET 4

1. RHK problem 26.36
Solution: Let
n = no. of moles of ideal monatomic gas = 1.00
R = universal gas constant = 8.314 J/mole·K
Then
(a)

Wabc =Wab +Wbc

= −
∫ b

a

p dV + 0

= −p0(4V0 − V0)
= −3p0V0 .

(b)

∆Eint(b→ c) =
3
2
nR(Tc − Tb)

=
3
2
(pcVc − pbVb)

=
3
2
(8p0V0 − 4p0V0)

= 6p0V0 .

∆Sbc =
∫ c

b

δQ

T

=
∫ c

b

dEint

T
−Wbc

=
∫ c

b

dEint

T
− 0

Eint =
3
2
nRT

∆Sbc =
∫ c

b

3
2
nR
dT

T

=
3
2
nR ln

(Tc

Tb

)

=
3
2
nR ln 2

= 8.644 J/K .

Note that the last result does not depend on p0
or V0, even though the problem asks us to ex-
press it in terms of p0 and V0.

(c)

∮
dEint ≡ 0 (state function) .
∮
dS ≡ 0 (state function) .

2. RHK problem 26.40
Solution: Let
n = no. of moles of ideal diatomic gas = 1.00
R = universal gas constant = 8.314 J/mole·K
Then
(a)

pV = constant (isotherm)

p2 = p1
V1

V2

=
p1
3
.

pV γ = constant (adiabat)

p3 = p1
(V1

V3

)γ

γ =
7
5

(diatomic)

p3 = p1
(1
3

)7/5

= 0.215 p1 .

TV γ−1 = constant (adiabat)

T3 = T1

(V1

V3

)γ−1

= T1

(1
3

)2/5

= 0.644T1 .
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(b)

Eint =
5
2
nRT (diatomic)

∆Eint(1 → 2) =
5
2
nR(T2 − T1)

= 0 .

∆Eint(2 → 3) =
5
2
nR(T3 − T2)

=
5
2
nRT1

((1
3

)2/5

− 1
)

= −5
2
p1V1

(
1−

(1
3

)2/5)

= −0.889 p1V1 .∮
dEint ≡ 0 (state function)

∆Eint(3 → 1) = −∆Eint(1 → 2)
−∆Eint(2 → 3)

= −0 + 5
2
p1V1

(
1−

(1
3

)2/5)

= 0.889 p1V1 .

W12 = −
∫ 2

1

p dV

= −
∫ 2

1

nRT1
dV

V

= −nRT1 ln
V2

V1

= −p1V1 ln 3
= −1.099 p1V1 .

W23 = −
∫ 3

2

p dV

= 0 .
W31 = ∆Eint(3 → 1)−Q31

=
5
2
p1V1

(
1−

(1
3

)2/5)
− 0

= 0.889 p1V1 .

Q12 = ∆Eint(1 → 2)−W12

= 0 + p1V1 ln 3
= 1.099 p1V1 .

Q23 = ∆Eint(2 → 3)−W23

= −5
2
p1V1

(
1−

(1
3

)2/5)
− 0

= −0.889 p1V1 .

Q31 ≡ 0 (adiabat) .

∆S12 =
∫ 2

1

δQ

T

T = T1 (isotherm)

∆S12 =
Q12

T1

=
p1V1

T1
ln 3

= nR ln 3
= 9.134 J/K .

∆S31 ≡ 0 (adiabat) .∮
dS ≡ 0 (state function)

∆S23 = −∆S12 −∆S31

= −nR ln 3− 0
= −9.134 J/K .

3. RHK problem 26.43
Solution: In Physics H7B, all problems in-
volving numbers should be solved completely in
terms of algebraic symbols before any numbers
are plugged in (otherwise it is much more diffi-
cult to give part credit). Let
m1 = initial amount of water = 1.780 kg
(initial amount of ice is 0.262 kg)
m2 = final amount of water = (1.780 + 0.262)/2
= 1.021 kg
Lf = latent heat of fusion of water = 333000
J/kg
T0 = temperature of melting ice = 273 K
Then
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(a)

Q(m1 → m2) = Lf (m2 −m1)

∆S(m1 → m2) =
∫ 2

1

δQ

T

T ≡ T0

∆S(m1 → m2) =
Q(m1 → m2)

T0

=
Lf (m2 −m1)

T0

= −Lf (m1 −m2)
T0

= −925.8 J/K .

(b)

∮
dS ≡ 0 (state function)

∆S(m2 → m1) = −∆S(m1 → m2)

=
Lf (m1 −m2)

T0

= 925.8 J/K .

(c) Here the change of entropy of the environ-
ment in this cycle is calculated assuming that
the heat to melt the ice is supplied at a temper-
ature T>0 which is greater than T0, for example
by a Bunsen burner. Nevertheless, using the fact
that the entropy of the environment is a state
variable, we calculate its change by making use
of a hypothetical reversible process, ∆S = Q/T :

∮
dSicewater ≡ 0

∮
dSenviron = −Q(m1 → m2)

T0
− Q(m2 → m1)

T>0

= −
(
−Lf (m1 −m2)

T0

)

− Lf (m1 −m2)
T>0

= Lf (m1 −m2)
( 1
T0

− 1
T>0

)

> 0∮
dSuniverse > 0 .

4. Purcell problem 1.5
Solution: Consider an element of charge dQ =
λRdφ, where dφ is an element of azimuth around
the semicircle (0 < φ < π), and λ = Q/πR is the
charge per unit length (in esu/cm) around the
semicircle.

Construct a Cartesian coordinate system
with its origin at the center of the semicircle;
choose x = R cosφ and y = R sinφ. Then the
symmetry about x = 0 and z = 0 requires the
electric field at the origin from the full semicircle
not to have any component in the x or z direc-
tions. So the net electric field must be parallel
to the y axis; it points toward −y if the charge
Q is positive.

At the origin, Coulomb’s law requires the
above mentioned charge element dQ to create an
element of electric field dE which has a magni-
tude equal to dQ/R2. However, only a fraction
sinφ of that field magnitude points in the −y
direction. Therefore

dEy = −dQ
R2

sinφ

= −λRdφ
R2

sinφ

= −
Q

πRRdφ

R2
sinφ

= − Q

πR2
sinφdφ

Ey = − Q

πR2

∫ π

0

sinφdφ

= − 2
π

Q

R2

E =
(
0,− 2

π

Q

R2
, 0

)
.

5. Purcell problem 1.8
Solution: Let a be the ionic spacing of the
one-dimensional crystal. Place the first positive
ion at x = 0, two negative ions at x = ±a, two
more positive ions at x = ±2a, etc. Consider
Purcell’s Eq. 1.9:

U =
1
2

N∑
j=1

∑
k �=j

qjqk
rjk

.



4

This is a double sum. As the number N of ions
approaches ∞, the sum of the terms of the dou-
ble sum which involve any particular ion will be
the same as the sum of the terms involving any
other particular ion (see the argument at the
bottom of Purcell’s page 14). Thus the double
sum reduces to a single sum:

U =
1
2
N

N∑
k=2

q1qk
r1k

,

where we have chosen to sum only the terms in-
volving ion 1. Furthermore, since the string of
ions is symmetric about x = 0, we may consider
in the single sum only the ions with x > 0, at
the expense of multiplying the result by an extra
factor of 2:

U =
1
2
2N

N∑
k=2; x>0

q1qk
r1k

.

Here we evaluate r1k = a(k − 1), and we use the
fact that the sign of q1qk is equal to (−1)k−1:

U =
1
2
2N

N∑
k=2

q1qk
a(k − 1)

=
Ne2

a

N∑
k=2

(−1)k−1

(k − 1)

=
Ne2

a

N−1∑
j=1

(−1)j
j

.

Taking N → ∞ in the limit of the sum,

U =
Ne2

a

∞∑
j=1

(−1)j
j

= −Ne
2

a
ln (1 + 1)

U

N
= −e

2

a
ln 2 ,

where, following the hint, we have evaluated the
sum by using the Taylor series expansion

ln(1 + b) =
∞∑

j=1

(−b)j−1

j
.

6. Purcell problem 1.14
Solution: This is similar to Purcell’s prob-
lem 1.5, discussed above, and we will use sim-
ilar notation. Consider an element of charge
dQ = λb dφ, where dφ is an element of azimuth
around the circle (0 < φ < 2π), and λ = Q/2πb
is the charge per unit length (in esu/cm) around
the circle.

Construct a Cartesian coordinate system
with its origin at the center of the circle; choose z
as the coordinate along the axis normal to plane
of the circle. Consider a line drawn from dQ to
a point (0, 0, z) on this axis. Define ψ to be the
angle that this line makes with the plane of the
circle. With these definitions, tanψ = z/b and
−π

2 < ψ <
π
2 ; the distance from dQ to (0, 0, z) is

b secψ. Because the configuration is symmetric
about x = 0 and y = 0, on the z axis the electric
field must point in the z direction, away from
the plane of the ring if its charge Q is positive.

At the point (0, 0, z), Coulomb’s law re-
quires the above mentioned charge element dQ
to create an element of electric field dE which
has a magnitude equal to dQ/(b secψ)2. How-
ever, only a fraction sinψ of that field magnitude
points in the z direction. Therefore

dEz =
dQ

b2 sec2 ψ
sinψ

=
λb dφ

b2 sec2 ψ
sinψ

=
Q

2πbb dφ

b2 sec2 ψ
sinψ

=
Q cos2 ψ sinψ

2πb2
dφ

Ez =
Q cos2 ψ sinψ

2πb2

∫ 2π

0

dφ

=
Q cos2 ψ sinψ

b2
.

The problem thus reduces to finding the value of
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ψ which maximizes the product cos2 ψ sinψ:

u ≡ sinψ

0 =
d

du

(
u(1− u2)

)
= 1− 3u2

u =

√
1
3

ψ = arcsin

√
1
3

z = b tan
(
arcsin

√
1
3

)

= b

√
1
2
.

7. Purcell problem 1.26
Solution: Place the origin of a Cartesian co-
ordinate system at the center of the semicircle,
with both parallel rods lying in the xy plane.
Orient the y coordinate so that the rods extend
to y = −∞.

At point C, the origin of this coordinate
system, any electric field can point only in along
the ±y direction, owing to the symmetry of the
problem about x = 0 and z = 0. Purcell’s figure
refers us to two elements of charge. The element
at point A has a value dQ = λb dθ and gener-
ates an electric field at the origin of magnitude
λb dθ/b2. Only a fraction sin θ of this field points
in the −y direction; thus

dEA,y = −λb dθ
b2

sin θ

= −λ
b
sin θ dθ .

The field from the element of charge at point B is
slightly more complicated. This charge element
has value dQ = λ d|y|, where d|y| is an element of
length along the straight rod, and |y| = b tan θ.
Therefore dQ = λb d tan θ = λb sec2 θ dθ. This el-
ement of charge lies a distance b sec θ away from
the origin. Again, only a fraction sin θ of the
field generated by this charge element points in
the +y direction. Putting it all together,

dEB,y = +
λb sec2 θ dθ
b2 sec2 θ

sin θ

= +
λ

b
sin θ dθ .

We have seen that dEA,y exactly cancels dEB,y

for any choice of θ; therefore EC vanishes.


